skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cheung, Yat Fei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. Abstract Horizontal gene transfer (HGT) occurring within microbiomes is linked to complex environmental and ecological dynamics that are challenging to replicate in controlled settings. Consequently, most extant studies of microbiome HGT are either simplistic experimental settings with tenuous relevance to real microbiomes or correlative studies that assume that HGT potential is a function of the relative abundance of mobile genetic elements (MGEs), the vehicles of HGT. Here we introduce Kairos as a bioinformatic tool deployed in nextflow for detecting HGT events “in situ,” i.e., within a microbiome, through analysis of time-series metagenomic sequencing data. Thein-situframework proposed here leverages available metagenomic data from a longitudinally sampled microbiome to assess whether the chronological occurrence of potential donors, recipients, and putatively transferred regions could plausibly have arisen due to HGT over a range of defined time periods. The centerpiece of the Kairos workflow is a novel competitive read alignment method that enables discernment of even very similar genomic sequences, such as those produced by MGE-associated recombination. A key advantage of Kairos is its reliance on assemblies rather than metagenome assembled genomes (MAGs), which avoids systematic exclusion of accessory genes associated with the binning process. In an example test-case of real world data, use of assemblies directly produced a 264-fold increase in the number of antibiotic resistance genes included in the analysis of HGT compared to analysis of MAGs with MetaCHIP. Further,in silicoevaluation of contig taxonomy was performed to assess the accuracy of classification for both chromosomally- and MGE-derived sequences, indicating a high degree of accuracy even for conjugative plasmids up to the level of class or order. Thus, Kairos enables the analysis of very recent HGT events, making it suitable for studying rapid prokaryotic adaptation in environmental systems without disturbing the ornate ecological dynamics associated with microbiomes. Current versions of the Kairos workflow are available here:https://github.com/clb21565/kairos. 
    more » « less